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SQUARE PLATE WITH CLAMPED EDGES UNDER NORMAL PRESSURE PRODUCING
LARGE DEFLECTIONS

By SamueL Levy

SUMMARY

A theoretical analysis 1s given for the stresses and
deflections of a square plate with clamped edges under
normal pressure producing large deflections. Values of
the bending stress and membrane stress at the center of the
plate and at the midpoint of the edge are given for center
deflections up to 1.9 times the plate thickness. The shape
of the deflected surface is given for low pressures and for
the highest pressure considered. Convergence of the
solution 18 considered and it is estimated that the possible
error 18 less than 2 percent. The results are compared
with the only premious approxzimate analysis known to
the author and agree within & percent. They are also
shown to compare favorably with the known exact solutions
Jor the long rectangular plate and the circular plate.

INTRODUCTION

An exact solution for the small deflections of a plate
with clamped edges was given by Hencky in reference 1
and an approximate solution for large deflections was
presented by Way in reference 2. In a previous paper
(reference 3) there is presented a solution of the
fundamental von Kirmén large-deflection equations for
a simply supported rectangular plate under combined
edge compression and lateral loading.

In the present paper a theoretical analysis is given
for the stresses and deflections of a square plate under
normal pressure producing large deflections. The edge
supports are assumed to clamp the plate rigidly against
rotations and displacements normal to the edge but to
permit displacements parellel to the edge. The analysis
replaces the edge bending moments by an equivalent
pressure distribution and then applies the general
solution for the simply supported rectangular plate.
The results for small deflections obtained by the
analysis agree exactly with those of Hencky and for
large deflections differ by less than 5 percent from the
approximate solution of Way.

The work was carried on with the financial assistance
of the National Advisory Committee for Aeronautics.
Acknowledgement is made to the Bureau of Aeronautics,
Navy Department, for its cooperation in a program of
tests of rectangular plates under normal pressure that

furnished the background for the preparation of this
paper. The author is grateful for the assistance of
members of the Engineering Mechanics Section of the
National Bureau of Standards, particularly that of
Dr. Waiter Ramberg and Mr. Samue] Greenman.

FUNDAMENTAL EQUATIONS

SYMBOLS
A
7 N S Vi
7AT T T T T T T T v
P
TV
!
{
|
l
l
L !
Iy a ul

FIGURE V. —Uniform normal pressure on a clamped square plate.

Consider an initially flat square plate of uniform
thickness (fig. 1) and let
length of sides.
thickness.
normal pressure, assumed uniform.
normal displacement of points of middle
surface.
Young’s modulus.
Poisson’s ratio.
Eh?
D= 12(1—p?)
z,y coordinate axes lying along edges of plate with
their origin at one corner.
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flexural rigidity of plate.
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cdge bending moments per unit length about

r and y axes, respectively.
normal stress.
shearing stress.
tenstle strain, unit elongation.
shearing strain.

extreme-fiber stresses in directions of axes.
median-fiber stresses in directions of axes.
extreme-fiber hending stresses in directions of

axes.
deflection coefficients.
stress function.

stress coefficients.

7:, o, average median-fiber stresses in z and y
directions, respectively.
Pa(z, ¥) auxiliary pressure replacing edge moments.
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FicURE 2.—Auxiliary pressure distribution for applying edge moments along the
edges.
(8) r=0, rwa,
(b) y=0, y=a.

p»(z, y) uniform normal pressure p expressed as a
Fourier series.
Pz, Y)=palz, ¥)+ oz, ¥).
p... coefficient in Fourier series for pressure,
pe(z, y). _
¢ moment arm of auxiliary pressure distribu-
tion, p.(z, y).
k., k, moment coefficients.

EXPRESSIONS FOR STRESSES AND STRAINS

The general equations for stresses and strains are
developed by Timoshenko in reference 4 (ch. IX) and
are algo given in reference 3. The stresses at the
middle surface of the plate are related to the stress
function F byv:

1)

the extreme-fiber bending stresses in the plate are
related to the deflections by

e g (2 2y

T T T aa—@\ o T Moy

oo _Eh (v ow o
T TN\ TR R -
v Eh 9.!&)

TeT T\ ordy

and the extreme-fiber bending stresses at the edges of
the plate are related to the bending moments per unit
length by:

””I___Qﬂ;
(I:l), =
"o o__ 6’”1/ ! “
o y= M h'l
6]
" Sm,
a 1_“717
=0 =
w  m, X h=al
T
The strains at the middle surface of the plate are:
=ty = (2 2
fx—EJx #Uu—E oy° I-‘axz
1, . . 1/%F &
(uz'E(dv_udz)=— “b?_“_a%;’) (4)
;2004w _ 2(14w) OF
Vo= TR T E  oroy

RELATIONS BETWEEN EDGE MOMENTS AND LATERAL PRESSURE

The required edge moments, m., m, will be replaced
by aa auxiliary pressure distribution p. (r,y) near the
edges of the plate as shown in figure 2. If this pressure
distribution is expressed by a Fourier series (reference 5,
p. 295) aad the value of ¢ approaches zero, the auxiliary
pressure is

4mrm, . rxz
T’u(rry): - “r sin T_‘L

re=l, 3,5 .. t=1, 3,5 ..

B _& 4
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Express m, and m, by a Fourier sertes, where k, and \ For the square plate the general solution describes the

k, are coefficients to be determined and where for a
square plate k, =k, when s=r,

m 4 k, sin ™2
=g h - a

yau

r=1,3,5 .. #)

4a’ . Sm
=— k, sin TJ

3=1,3,5 ..

Inserting vquation (6) in equation (5) gives

: : : : (7)
Pa(z, J)-—( )p (rk, +s/t)qm i sw

rei, 35 . =135 .

The uniform normal pressure p may also be expressed
by a Fourier series (reference 5, p. 295) as,

4\ ; SN . .
Pb(z,y)=(;> P E E (?E) sin f—:—x sin % (8)

r=1,3,5.. =135 ..

The addition of the uniform normal pressure p,(z,y)
and the auxiliary pressure replacing the edge moments
p.(z,y) 1s obtained by adding equations (7) and (8) and
gives

plLy) = () 22 — +rk + sk, >su\ ™ sin SZ_‘Q (9)
rml Sm|

where
4\ /1, ‘
pr,s—(;) P(,;Trk.+3k:> (10)

RELATION BETWEEN STRESS FUNCTION F, DEFLECTION w. AND
PRESSURE COEFFICIENTS p,,,

Since the edge moments m, and m, have been re-
placed by the auxiliary pressure distribution p.(z,y)
(equation (7)), the general solution for the simply
supported rectangular plate given in reference 1 may
be applied. This solution was derived in terms of
Fourier series from the von Kdrmén equations (refer-
ence 6). The form of von Kdrmén's equations used is
that given on page 343 of reference 4.

: 'w d'w
Tor 5?’]

OF O'F O‘F O%*w
‘**ax*ay““ S ‘"{(axay

bw P
T2+ St (1)
h O_“EQ‘E 2FOu_, OF o)
D\ oy* dr' " Q2* dy* ~Oxdy droy

deflection by the Fourier series,

E E m.n SIN ———” sin %@ (12)

m=1,3,5.,.n=1,3,5.

the pressure by the Fourier series previously given in
equation (9).

p(ry)= E E prasin 22 sin ¥ (13)

rel,3,5...0=1,3,5.

and the stress function F by the Fourier series and
polynomials,

(14

RN mxr o nry

‘—2+2+ bmanOSaCOSa
m=0,24...n=0,2,4...

and shows that for zero displacement normal to the
edges of the plate,

o0 @
. E=x 22
—'udy-——ng MWy n

m=],3,5... n=},3,5...

o @
3 212._": nAw,. ,
P

Oy, uo,
m=],3,5... n=],3,5...

and (15)

The general solution (reference 3) gives general equa- .

tions from which the membrane stress function co-
efficients b,, , can be calculated in terms of the deflection
function coefficients wn, .. For the special case where
a=>5 (square plate), in the present paper the first 23
of these coefficients b, , are,

E
by 2= 62.0:‘3_2(101 229wy FF 2wy w3 — 18wy 3w 5
+25w1,52°‘2’w| AW )

E .
bDA:bLO:éz(wl.lwl AT Wy Wy 3= Wy W - )

E .

ba 2 =‘-(‘w| Wy 3 — 2w, 7 4w, 3wy 5 — W3 aw 5 - )

E (16)
bo.o=bu.o—°88(wx FH0ws F 2w w )

E .
bz.a=b¢.2=4‘0(—)(—w1.1w1,3+25’w1.3 + 9wy w3

+ 9w, qw, ;—~49w, guy s+ 81wy w5 .. )

b bno-—E<w13w|a‘-.)
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E

by s=by0 OO( Wy Wy 5+ 9w, a2+ 16w, 5w, 5. )

E L
b4.4="(-w|.32+8w1 W s— 9wy P )

E
bo.jo="b1o O_SOO(ul $..0)
E \
b2.8=b§,2::m——2—4(—w\,3w1_5+81w3v3w|'5 L) (16)
K
b4 O_ba = 704(_91.0] ,3w3_3—49w, AWy s

E _ 4169w, 2. ..)
bis=bs = 1600< Qwyawy 5. . .)

E
bs,s=3—6(_w|.52 a0

The family of equations relating the pressure co-
efficients p,, and the deflection coeflicients w, , are
also given by the general solution (reference 3). For
the special case a=b (square plate), presented in this
paper, the first 22 terms in each of these equations are
given in table 1 for Poisson’s ratio xu=0.316. Advan-
tage has been taken of the relation w, ,=w, ., which
holds for a square plate under symmetrical loads, to
reduce the size of table 1 as well as equations (16). As
an example of the use of table 1, the first few terms of
the first equation (giving the relation between p, ; and
the w, ,’8) are given in equation (17).

0= — ”‘ﬁﬁo 370 "+0 490(“" ‘)

—0.375<’%l‘—") (3”7‘1—“>+ .

MAGNITUDE OF EDGE MOMENTS m, AND m,

a7

The edge moments m, and m, must now be deter-
mined to satisfy the condition of zero slope at the edges
of the plate. Setting the slope, perpendicular to the
edges z=0 and r=a, equal to zero gives

ow n_ E E mr . nwy
<b.l‘ z-o,x-a—O_ —a—w,.,,.sm —(—1— (18)

m=135... n=1,35...

and setting the slope perpendicular to the edges y=0
and y=ea to zero gives,

ow T.H' .. mxX
SR E i 22 (10

m=1,35... n=1,35. .,

Equations (18) or (19) are equivalent to the family
of equations

0=w|_|+3w"3‘+‘5u’1.5+7w1'7+. .
0=w3,|+3w3,3+5w;.5+7w1.7+. i (20)
0=w5.l+3105'3'+'51D5'5+7u'5.7+. AN

|
|
i
|

The deflection coefficients w, » must now be deter-

i mined from table 1 by solving each equation for the
" linear term in terms of the cubic terms and the pressure

corflicients p,,. The deflection coefficients w, , thus

.obtained are now substituted in equations (20); and,

for the pressure coefficients p,,, are substituted there
values as given by cquation (10). The resulting
equations are.

0=2835+7 66k‘+0 324k, + 0.0800ks+0.0303k-
4+0.0145k,+ . .. + K,

0=0.0523 +0.324k,+1. 113k3+0 1405k,
+0.0675k,40. 0360kn+ + K,

0=0.00680+0.0800k,+0.1405k,+0.956k,, @1
+0.0690k,+0.0433k,+ . . . + K, =

0=0.001767 +0.0303k, 4+ 0.0675k;+ 0.0690k,
+0.660k, 40, 0402kg+ + K,

0=0.000648+0.0145k, +0. 0360k,+0 0433k,
+0.0402k,40.505k,+ . .. + K,

where K, . . . K, arc functions of the pressure p and
of the cubes of ‘the deflection functions wa .. The first
22 terms in the equations for the first five coefficients
K, are given in table 2. As an example of the use of

table 2,
. R w0V ' Eh? 3&,)’(10_.3
K= —0.8057% (T) +0.0062 % ( ; : )
, » ER*fw, .1>2<1ﬁ£ _ o
—7—0.](17—?5‘—<—h— 3 > PR (22}

SOLUTION OF EQUATIONS

VALUES OF DEFLECTION COEFFICIENTS w. . AND EDGE MOMENT
COEFFICIENTS k.

The method of obtaining the required values of the
deflection coefficients w, , &nd the edge moment

. . . wy .
coefficients k, consists of assuming values for % and

Pa W 3 , %
then solving for o XS b

y ko, ks, lf.'n .. . by

successive approximation from the simultaneous equa-
tions in table 1 and equations (10) and (21). These

calculations have been made for 10 valucs of%i

The corresponding values of the first 36 deflection

k. are given in table 3 and table 4, respectively. The
error arising from the use of only the first 22 terms in
the equations in table 1 will be considered in a later

section.
CENTER DEFLECTION

From equation (12) the center deflection is

wm,,,zz Z_<— l)l;-” Won (23)

m=1,3,5...n=13,5,..

P ‘.,.;-/




. &nn—ﬂ/‘

SQUARE PLATE WITH CLAMPED EDGES UNDER NORMAL PRESSURE

The center deflection was obtained by substituting the
values of wn » from table 3 ip equation (23) with the

-

; !
>0 ‘ , ‘

(2}

Center doflec hor 1ot W /M

300
Pressure ratio, pa‘/Eh*

ag 100 200

FiGURE 3.—Center deflection of square plate with clamped edges. u, 0.316.

results given in table 3 and figure 3. Figure 3 shows
that the deflection pressure curve deviates increasingly

213

This calculation has been made

in equation (12).
for very small deflections

along the center line z=a/2
1£‘;""——"—.'<<1 and for the highest deflection calculated
E;—"1=1.90‘.2 with the results given in figure 4. It1is

apparent that, as the center deflection increases under
increasing normal pressure, catenary tensions become

100

= |
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9 Lineor theoTyi | /”f/ | | [
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4 : i : Lmeor heory | ( |

S ' ! lcenter) ' I
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o = l b
T : l E ! k
100 200 300

Pressure ratio, paYtht

FIGURE 5.—Stresses perpendicular to edge at its midpoint and at the center of a
clamped square piate in any direction. , 0.316; «’*a%/ ERY, extreme-fiber bending
stress ratio; ¢’¢}/EN), membrane stress ratio; sa/ ER?, extreme-fiber stress rstio;

pa‘/ EM, pressure ratio.
A, rat/ EAt (midpolnt of edge)
C, vt/ EA (center)
E, ¢'a1/ EM (center)

B, ”7a1j EXt (midpoint of edge)
O, ¢''a/ EW (center)
F, o’at/ EM (midpoint of edge)

appreciable and the inflection point is shifted toward
the edges of the plate.

. BENDING STRESS AT MIDPOINT OF EDGE

The extreme-fiber bending stress at the edge was
obtained by substituting equations (6) in equations (3).
This substitution gives, for the extreme-fiber bending
stress perpendicular to the edge at its midpoint,

N |
: RUN
e’ T N
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Ny AREERNE
e
s L el L NE
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4

Q

Oistonce from ciamped edge
FiGURE ¢.—Shape of deflected surface aiong center ilne z=a/2 for very small deflection
0 eencae/A < <1 and for the largest deflection calculated waeaver/h =1.902.
from a straight line with increasing deflection. The
deviation exceeds 10 percent for deflections exceeding
about one-half of the plate thickness.
SHAPE OF DEFLECTED SURFACE

The lateral deflection of the plate is obtained by
substituting the deflection coefficients wm.» (table 3)

"a? 24 pa!
U[«“TG}{?).M,,“.. = %%(kl—k3+k5—k,+ ) (24)
4
The values of k, and Z‘Z‘ given in table 4 were sub-

(24) with the results given in table
5 and in figure 5. Figure 5 shows that the bending
stress perpendicular to the edge at its midpoint deviates
increasingly from a straight line with increasing pressure.
The deviation exceeds 6 percent when the deflection is
greater than one-half of the plate thickness.

stituted in equation

BENDING STR'ISS AT CENTER OF PLATE

The extreme-fiber oending stresses are obtained by
substituting equation (12) in equations (2). This
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substitution gives for the stress at the center of the !

plate in any direction,

(a"n")
%]
[h? Jeenter of piate

l)m+n ”v""()_]
’“__“) (*— (Il pm 3 4]

The values of —hl given in table 3 were substituted in

-

equation (25) with the results given in table 5 and in
figure 5. Figure 5 shows that the bending stress at the
center of the plate is less than one-half of the bending
stress perpendicular to the edge at its midpoint.

MEMBRANE STRESSES

The membrane stresses in the plate are obtained by
substituting cquation (14) in equations (1) and using
cquations (15) and cquations (16) to determine the
values of the stress coefficients 7., 7,, and b, ,. This
substitution gives for the membrane stress perpendicular

to the edge at its midpoint,
5 )4("’_"><E'_3)

("_'12 =3 042(%)2
A% midpoint of edyx ' ‘
) 67(101 1)(”4 1)+1 og('wl .)(u, ,>J_1 61 (wl 1

PAUENELTANE WY W51 o7 qr( ey
-.%.20( 2 X : )Tzlios( | X L )+~,.31( 2 |
. e WY W s - Wy 5 2‘ ’
-44.o(_7l—>(\ ; )“03"(77) I (26)

and, for the membrane stress at the center of the plate
in any direction,

UZ%), mw::;.042(%'1—-‘;—5.44(%};-‘)(”—;‘7“)
+4.45('i’,;—*>(’%:i>+ 10.38(‘%)(“1’#)4 55.09("’7"’7
——55.06(%'—“)(%—")-93.98(1%5X1%3)+27.37(1i}:‘—3)2
+100.8 9,;—“)(%-5>+143.3(5,‘L—'5)2+ L @27)

* given in table 3 have been substituted

W,
h .
in equations (26) and (27) with the results given in

table 5 and in figure 5. Figure 5 shows that for pres-

+
sures less than the maximum computed Pe <402), the
ERY

membrane stresses arc smaller than the corresponding
extreme-fiber bending stresses and that they change
only a small amount in going from the edge to the center
of the plate.

CONVERGENCE OF SOLUTION

An exact solution would requ 're the use of an infinite
number of terms in the equaticns of tables 1 and 2
In the present solution only the first 22 terms were
used. The effect of limiting the n 'mber of terms is

brought out by the comparison in table 6 of the solution
for 2, 3, 6, and 22 terms. For example, the use of only
i the first six terms in the first equation of table 1,

Wy g Wy
excluding cubic terms involving 7'17 _ﬁ‘_’ ete., as fac-

tors, gives the cquation

oz—ﬁji[;;’l,+n 37020, 490(”"
Y 73(1lv| ,) ‘e 1)1"(? 8(101 ‘X'ml 1)
—3.35(%”) (2a)
the use of only the first three terms in the first equation
of table 1, excluding cubic terms involving ”/‘L 4 w;b’

w
'—}IL_' ete., as factors, gives the equation

0= ,”[L}‘]‘f 1037 o’bl 240, 400(’”‘ ‘) (28b)

and the use of only the first two terms in the first equa-

tion of table 1, excluding all cubic terms, gives the
cquation

- P Wy 5

0=~ STpm 0370 (28¢)

It is cvident from table 6 that the convergence is

rapid for the center deflection. The cbnvergence is

somewhat slower in the case of the bending stress at the

midpoint of the edge. It is estimated from table 6

that the possible error'in table 5 is less than 2 percent.

COMPARISON WITH THE RESULTS OBTAINED BY
PREVIOUS AUTHORS

THE CLAMPED RECTANGULAR PLATE WITH SMALL DEFLECTIONS

The earliest work on the problem of the clamped
rectangular plate known to the author is that in 1902
by Koifalovich (reference 7). Koialovich solved the
problem by using trigonometric series. In 1913
Hencky (reference 1), using a method which he credits
to M. Levy, made a thorough analysis of the moments
and deflections for plates with small deflections. In
1914 Boobnov (see p. 222 of reference 4) extended the
scope of Koidlovich’s earlier work. Since that time
additional work on the problem extending the analysis
to different types of loading and a wider range of plate
sizes has been done by Nddai (reference 8), Timoshenko
(references 4 and 9), Wojtaszak (reference 10), Evans
(reference 11), Young (reference 12), and Pickett
(reference 13). The results of these authors for the
square plate with clamped edges agree closely with
Hencky'’s results presented in reference 1. The present
paper gives, for small deflections, a value of the center
deflection of 0.001263 pa‘/D as compared with Hencky’s
value of 0.001265 pa‘/D; and a value of the bending
moment perpendicular to the edge at midpoint of 0.0512
a*p as compared with Hencky’s value of 0.513 a®p.
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THE CLAMPED RECTANGULAR PLATE WITH LARGE DEFLECTIONS

The only previous analysis of square plates with
clamped edges under normal pressure producing large

20 - R
* T [/.F/‘/J
+ ‘ ! i {
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< B~ R R R
: L, J////f b }
I R SR S | o
Lie 7; ‘ / t L [ 1T J
5 T
2 | ) : | . \ |
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+ Referen =0
k) L*‘ e r ) ;e:eﬂfcfo/i’%”‘i:a3/5 __{
R ,4 R J
R I S N R ‘
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— T
| ‘ | ' } 5
o 5 0 0 700 500

Pressure rotio. oatEh

FiGURE 8.—Comparison of Way's solution (reference 2) using the Ritz energy method
and the present solution for the center deflection,

deflections that is known to the author is the analysis
by Way (reference 2) in which the Ritz energy method

R
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B FiGURE 7.—Comparison of Way's solution (reference 2) using the Ritz energy method
- and the present soiutiofl for the total stress and the membrane stress perpendicular
K to the edge at its midpoint.
3 is used with polynomials satisfying the boundary con-

ditions and containing 11 undetermined constants.
TOSRIS O - 48 - 1S

Although his calculations were made for a Poisson’s
ratio of 0.3, 1t appears from Way’s analysis of circular
plates (reference 14) that small changes in Poisson's
ratio do not appreciably alter the solution. In figures
6 and 7 are compared the results obtained by Way in
reference 2-with x=0.3 and the results of the present
paper with p=0.316. The agreement is excellent
(within 5 percent) for both the total stress at the
middle of the side and the center deflection. The
agrecment between the membrane stresses is not so
good. In no cnse, however, do the membrane stresses
differ by more than 4 percent of the total stress.

THE INFINITE PLATE STRIP AND THE CIRCULAR PLATE

The values of the center deflection and of the extreme-
fiber stresses at the center of the sides for a square
clamped plate with large deflection are compared in
figures 8 and 9 with those for a clamped circular plate

T T T T T

R, Clomped lorg rectongular plofe (ref. /5)
Poissor's ratio, 0.3/6.

S, Clomped squore p/ar‘e (presenf pcpe/—)

24 Porsson’s ratio, 0.3/

¢, Clomped arcu/a/— p/?;e (rer’ 2)

//sson/s ratio, 1 |
T
ol i
E < >
s A L7 J
E / A M | l/
g |
g/.:? / g % }
S \ //C '1 |
L ( 74 T | |
§ A G
4 [}/ ] L l |
f / o Ca/cl_(/afec; po,,-z,fs { }
N

0 00 200 200 <00
Pressure rotio, patEh+

FiGURE 8.—Variation of deflection at center with pressure for square plate, circular
plate, and long rectangular plate.

(reference 14) of diameter a and those for a clamped
long rectangular plate (referencrs 4 and 15) of width a.
As would be expected, the s uare plate is more rigid
than the long rectangular r.ate and more flexible than
the circular plate.
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|_ R, Clomped long rectongular plote fref. 5}
Poissor's rotio, 045?/6.

S, Clomped squore plate (present paper)

— Poissor’s rotio, 0.3/16.

C, Clomped circular plate (reference 2) ;

Porssort's ratio, 0.3.
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FIOURE 9.—Variation of maximum extrerme-fiber stress at €dge with pressure for
square Dlste, circular plate, and long rectangular plate.

NUMERICAL EXAMPLES

EXAMPLE 1

Calculate the center deflection and the maximum
extreme-fiber stress for a 10- by 10- by 0.05-inch
aluminum-alloy plate (E=10" lb/in?, u=0.316) with
clamped edges, subjected to a normal pressure of 2
pounds per square inch.

The pressure ratio is:

pat_ _2X10° .,
Eht 107X (0.05)*
From figure 3, the corresponding deflection ratio is

w(”l ler - 0]
5 1.72

so that the center deflection is
Weenter=1.72X0.05=0.0860 inch.

From figure 5, the maximum extreme-fiber stress ratio

for the edge at its midpoint is

2
%‘;;,=65.0
so that the maximum oxtreme-fiber stress is
7 2
a=65.019——>—<l—%%9§)~=16,30\, pounds per square inch

EXAMPL. 2

Calculate the pressure that ~ "' produce a maximum
extreme-fiber stress of 30 © / nu 8 per square inch in

a

REPORT NO. 740—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

15- by 15- by 0.10-inch aluminum-alloy plate with

clamped edges.
The maximum extreme-fiber stress ratio is

oa®_ 30000X15°_ .
ER- 107X (0.10)2 °“?

From figure 5, the corresponding pressure ratio is

SO

p=2339X 107X (0.10)*

4
%:339

that the normal pressure is

{5 =6.70 pounds per square inch

NATIONAL BUREAU OF STANDARDS,

14,

15.

. Nédai,

WasninagtoNn, D. C., May 24, 1941.
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TABLE 1.—EQUATIONS BETWEEN DEFLECTION COEFFICIENTS v, . AND PRESSURE COEFFICIENTS p,, WHEN

POISSON’S RATIO EQUALS 0.316

{Only the first 22 terms have been retained in these equations)

BQUARE PLATE WITH CLAMPED EDGES UNDER NORMAL PRESSURE

0= O= O 0= 0= i 0= Q= Q=
T -pu —p1s -pa ~Pis —pus P TR “ha 1
. 0.3m5L 9267 oYL 02.5% w5l st Gl | gt
(‘L':-’)' 4%0 —. 0625 0 0 0 0 0 0
(%)'_‘”;_’ -3 3.142 - —.210 0 0 0 0
(" '), o 0 - 588 3.690 -2028 0 0 v °
(1;_:)’% 0 —.210 408 5.76 ~.2275 0 0 0
2 (2‘.’)’ 6.28 —4.875 5.628 2.872 - 250 0 0 °
Turar —2.34 5.625 0 -7.02 1.125 0 0 0
.‘°h‘~""_;’ > —.840 5.745 -14.04 -5.65 8.33 - 53 0 0
L (%—) 1,600 0 0 2,388 ~2.388 0 0 0
Sana 910 ~7.02 9.54 3.845 ~19m 1.900 0 0
L ’) 13.53 -2.825 3048 0 0 1.280 -7 0
(‘”-“-E) -3.28 .77 ~10.125 -8.625 1. 5623 —.0623 0 0
("" 2y s.625 | 1819 =761 16.79 ~11.000 810 0 0
(55 5748 | 25875 358 8.5 ~18.84 4 —.1981 0
L2y 0 35.08 0 0 0 —y 0 0
SR —14.04 33.58 0 —85.13 37.78 ~15.00 2346 0
W (‘”‘ ') ~5.65 89.5 ~85.13 —40.875 30.98 -8.00 2.56 - 2050
(EAL’) 0 0 3.68 0 0 0 ° 0
(w., w14 R 0 [ 101.2 ~10. 41 0 -6.32 0
‘”"("' ) 1648 | ~4257 024 0 624 26,68 0 142
('L;_*) ) -13.63 0 207.9 ~28.8 ‘ 0 0 0
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TABLE 1.—EQUATIONS BETWEEN DEFLECTION COEFFICIENTS wa,.. AND PRESSURE COEFFICIENTS p,, WHEN

POISSON’S RATIO EQUALS 0.316—Continued

ADVISORY COMMITTEE FOR AERONATUTICS

r . | ! i i
| o= i o= - 0= L om L o= [ 0= 0= !
B ' ' N i H
;
] a¢
! T;E_h—‘ -Pvu —pas ~ma -p M -pn i —pis —-psa
; —
| 30t 10772 e i 15620 | ggae? 231" 506222
) 0 ) A R h A
; (ﬂ_')' 0 0 0 0 0 o | 0 0
Y N
: e\ s -
, (T)T 0 L0025 0 0 0 0 v 0
1 D —— — -
w12\ s
‘ (T)T 0 584 0 o ) 0 v 0
(‘i‘—')"'—" 0 —1.624 L0100 0 0 0 ] 0
WA
LIE _!) 0 -2.080 L0025 n 0 0 12 0
AN
Mig W13 My 0 2.500 132 0 0 0 - L0258
O )
“_‘;_‘ 1";‘_‘ %’_‘ o 12 683 — 4060 L0244 0 0 —8.780 . 3806
‘M(‘f’—‘)’ 0 0 0 0 0 0 0 - 2028
A
My M Y 0 ~3.287 4310 —1. 18 0 0 0 —2.228
AR
LE} (#)‘ 0 % 680 1,02 ~. 2025 000 0 15. €25 ~6. 640
("" ’) 0 1.62 —1.624 0 0 0 <3128 2%

, - _
(wn Wk} a —1% 4% o ~. 31 0 L] 1. 30 —~2.405
(ZA-_').'L"_* 0 ~31.08 .82 ~5 4 oz 0 728 ~13.41
judE ("" ‘)' 0 18.42 —15.03 0 0 0 0 0
T 0 33,90 ~ 10,04 0 —2a8 0 ~67. 54 9.82.
o (1;_‘ ' 0 284 —AR1S 24.%2 -3.7% 22 0 3310

""‘)' L n 0 " L —508 0 0 o 0
[
(wn Yiak) o o 0 { 0 0 v 6.0 —17.64 ‘
”_'_‘(ﬂ.‘)’ o J —3.7 63. 41 ~18.54 ) -1.681 o -16.40 I
[} [ j A
T |
(";;‘f)‘ ~.0825 | —30.0 0 . X 10.56 ) o ) I
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i TABLE 1.—EQUATIONS BETWEEN DEFLECTION COEFFICIENTS w, AND PRESSURE COEFFICIENTS p,, WHEN
! POISSON’S RATIO EQUALS 0.316—Concluded
. i Others _
0= | o= ] 0= J 0= ) O | 0w \ 0~ i 0
N 1 t !
& a* | l i ‘ N I “
M B =Py 1 =P : ~Ps.a 1 -p1.: | =P g L T ( =Py | —Pen
: e e N s
i |
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} |
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B S 0 ) 0 0 0 0 ) 0
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w1\
12 ) 0 0 0 ) 0 ) )
T
(!ili‘ 2 29 0 0 s 0 o ° 0
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w_:_x(g.u 1 ° ° 2028 15.48 —9.60 o 3.8 o
wTu)' 28 e 0 0 -10.56 4,00 o °
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TABLE 2.—EQUATIONS BETWEEN THE MOMENT COEFFICIENTS K, IN EQUATION (21), THE DEFLECTION
COEFFICIENTS w... AND THE NORMAL PRESSURE p

.

| R R

; j - S B

‘{ (ih‘_')l ~0.808 0. 00417 0 0 t 0

; (‘L‘.L)’l'f . 0062 ‘1 ~.138 . 00203 0 0 ‘
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(% | e | e [ o
o (2%3), —9.63 L0873 0056 000652 0
B - 310 Sy 0415 - 00469 0
Ei'_‘-";—'”.;—' 42 5 0408 L0049 00053
““( ) ~6.24 ) v 007684 0
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| | ]
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TABLE 3.—VALUE OF DEFLECTION COEFFICIENTS we.,s AS A FUNCTION OF THE NORMAL PRESSURE p

r’;;" 8.3 l 63.4 95.0 134 9 184.0 28,0 318.0 020

% . 400 ‘ . 600 . 800 1.0 L2 1t 16 1.8

ECRc s ‘ ~_ 0608 o744 084 | —os88 | —.0910 | —. 08e8 L0854
"’T” . 0080 . 0081 . 0007 0108 .11 L0124 .0130 0139
S5 —014 | -.093 0314 L0398 | —.0471 —. 0850 ~.0821 0681
?%'-’.‘% —. 0064 —. 0008 0138 L0181 -0z —.0281 —. 0338 0398
“%-',E'%’ . 0016 L0023 L0028 . 0031 . 0033 .0033 . 0031 . 0028
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"’T"’.ﬂ" . 0006 0000 L0011 .0013 L0016 . 0017 .0018 L0018
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¥y W —.0017 - 0027 . 0038 . 0050 —. 0063 —.w}a —. 0004 o110
"’".'”'TJ . 0002 . 0003 . 0004 . 0008 . 0008 . 0008 - 0006 . 0008
WT”’LAU . 0002 . 0004 . 0008 .0007 . 0000 .0010 .0013 .0015
“"T'“.?%" - 0011 -.0017 . 0033 .0032 —. 0040 -. 0050 ~. 0062 . 0072
';'.ﬂ,!'h'_J . 0002 _ o002 .0003 .0003 . 0003 . 0003 . 0003 . 0003
"T'»',".‘L' 0001 . 0002 . 0002 . 0003 . 0004 . 0008 . 0008 . 0007
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E,A'—""ﬂu'_" .0001 . 000t .0002 . 0002 0002 0002 . 0002 . 0002
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TABLE 4 —VALUES OF EDGE MOMENT COEFFICIENTS TABLE 5.—CENTER DEFLECTION, BENDING STRESSES
k,, k, AS FUNCTIONS OF THE NORMAL PRESSURE p ¢'', MEMBRANE STRESSES ¢+, AND EXTREME-FIBER
STRESSES ¢ AS A FUNCTION OF THE LATERAL

3
f R >
b ‘ o w | ok o ! PRESSURE p
] ! ! l : (s =0.316]
i )
; 0 0.3 00{}\3 ‘ 0.0u7 ‘ 0.0084 | 0.0045 i - 7 j
17.8 - [ 171 0084 . 0045 enter ! .
89 | T3se 0 ou2s 01;52 | T o0K3 ‘ 0048 | Pressure deflec- Sl{eunt lﬂ\dpﬂn:olsdge Stre_ssntce;iwrlqrplne‘
1 4 / -0 oo ‘ AUSE | Cws0 00k ! “tioa perpendicular to edge) in sy direction
L9580 —. 308 0214 0138 | 0076 t <3| |
g |~ 28 | 0160 o125 ¢ o073 | 0042
1840 — 85 _0Us ot 0069 | 0041 Pab | Ceemte | '@ o’al eat et | o ea?
2450 | 247 | 0079 - 0009 . 0088 :0039 En K Ex En En s | Ew i
a0 | —mo ‘ 0M6 | 0087 | 0063 |
0200 | —nms | l00 | (0077 | 0060 i
I ! 0 0 0 0 0 0 0 0
17.7% .7 5.36 12 5.48 2.5 By} 2.6
38.3 471 | 108 7 1;.52 4.? L62 g‘z
TABLE 6—CONVERGENCE OF SOLUTION AS THE oSl IO I (O I B B0 S T B - o
NUMBER OF TERMS USED IN THE EQUATIONS OF 13.9 L;g g.g f.g 22 1” 3.;3 123
184.0 1. . . . . 4. 15,
TABLES 1 AND 2 ARE INCREASED FROM 2 TO 22 e iR e i3 o e N 153
318.0 1.714 | 56.3 7.60 | 63.9 13.8 5.08 | 21.9
©02.0 1.902 | 68.2 v.64 | 758 151 | 10.02 1 251
pat Using 2 Using 3 Using 6 | Using 22
EM terms terms terms terms
Center deflection Weqaimih
3.4 0.87 0.76 0.702 0. 695
184.0 252 1.50 1.34 1.3%
402.0 5.5 215 1.04 1.902

Bending stress perpendicular to edge at its midpoint ¢'’a?/ Ep*

83 4 { 19.4 18.9 18.6 18.97
184.0 583 34,1 32 48,2
402.0 13,1 .5 3.8 6d. 2
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